If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+x-106=0
a = 2; b = 1; c = -106;
Δ = b2-4ac
Δ = 12-4·2·(-106)
Δ = 849
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{849}}{2*2}=\frac{-1-\sqrt{849}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{849}}{2*2}=\frac{-1+\sqrt{849}}{4} $
| 6(y-1)=-2y+18 | | 7x-27=3x-5-1 | | 4/5*x-1/4*x=11 | | 3x×4=7x-(x+17) | | 9=q−8 | | -x+4(x+1=2x | | -6x-35=4x-20=19 | | a/4+5=6-a/4 | | 2.5x^2-5x-20=0 | | |2x-12|=4x-6 | | f/0.25×0.25=16×0.25 | | 3x+10=9x-39=47 | | Q(x)=2x2-15/x2-2x-15 | | 4m+20=18+5m | | 3/4x-1/4x=14=3 | | e/4×4=2.5×4 | | 0.5(x-7)-2/5(2x+5)=2 | | 2y×4=50 | | 90x=50x+16 | | 40+0.25p=25+0.40p | | x=25+833/7 | | n+2(n+3)+4n-5=148 | | 7+3z=z+19 | | n-4——————5=n——————8 | | n+2n+6+4n-5=148 | | (1)3x+8+2x+2=20 | | F(x)=5x10x2+5x | | 5x-(3x+10)=12 | | 3x-12x²=0 | | (x+40)+(4x-5)+(6x+20)=180 | | t^2+3t+3=0 | | 3(c-5)+8(1+c)=-117 |